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Grid Generation About Complex Three-Dimensional

Aircraft Configurations

The study of the aerodynamics or radar cross-section signatures about complete

aircraft by numerical methods is still limited by two (or more) problems. The

first involves the lack of adequate turbulence models applicable to a wide range of

flow regimes and the second has to do with obtaining three dimensional grids with

sufficient resolution to resoIve all the flow or other physical features of interest. This

study is concerned with the latter problem.

The generation of a computational grid involves a series of compromises to

resolve several conflicting requirements. On one hand one would like the grid to be

fine enough and not too skewed to reduce the numerical errors and to adequately

resolve the pertinent physical features of the flow field about the aircraft. On the

other hand the capabilities of present or even future supercomputers are finite and

the number of mesh points must be limited to a reasonable number, one which is

usually much less than desired for numerical accuracy.

One technique to overcome this limitation is the 'zonal' grid approach. In

this method the overall field is subdivided into smaller zones or blocks in each of

which an independent grid is generated with enough grid density to resolve the flow

features in that zone. The zonal boundaries or interfaces require special boundary

conditions such that the conservation properties of the governing equations are

observed. Much work has been done in 3-D zonal approaches with nonconservative

zonal interfaces. A 3-D zonal conservative interfacing method that is efficient and

easy to implement was developed during the past year.

As originally envisioned, the conservative interfacing was to be developed for

finite difference codes which were the most prevalent codes at NASA/Ames. How-

ever during the course of the work it became apparent that such a procedure would

become rather complicated and that it would be much more feasible to do the con-

servative interfacing with cell-centered finite volume codes. Accordingly, the CNS

code was converted to finite volume form. This new version of the code is named

CNSFV. The original multi-zonal interfacing capability of the CNS code was en-

hanced by generalizing the procedure to allow for completely arbitrarily shaped

zones with no mesh continuity between the zones. While this zoning capability

works well for most flow situations it is, however, still nonconservative. The conser-

vative interface algorithm has also been implemented, but has not been completely

validated yet.

The results of this work has been reported in reference 1, a paper to be pre-

sented at the 10th AIAA CFD conference to be held 24-27 June 1991. This paper

essentially covers all the details of the work done under this contract and is included

as an appendix.
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Conservative Multizonal Interface Algorithm

for the 3-D Navier-Stokes Equations

G. H. Klopfer" and G. A. Molvik"
NASA Ames Research Center

Moffett Field, CA 94035

Abstract

One method of solving the Navier-Stokes equations

about complex and realistic aerodynamic configurations is
to use a zonal method. In this method the overall flow
field domain is subdivided into smaller blocks or zones. In

each of these zones, the flow field is solved separately of
the other zones. The boundary data for each zone is pro-

dded by the neighboring zones. The major difficulty of
the zonal methods has been how to maintain overall con-

servation for arbitrarily shaped zones. A new method of
conservative patched zones has been developed. It uses
structured meshes in the individual zones. The interface

between the zonal block faces is defined by the union of

the face points of adjoining blocks. An unstructured grid

is generated upon which the interface fluxes can be de-

termined. Flux balancing of the interface fluxes is then

easily achieved to obtain global conservation. The method

has been implemented into two Navier-Stokes codes. The

use of the procedure is easily implemented into other fi-
nite volume codes. There are no topological restrictions
on the zonal boundaries; e.g. the zonal interfaces can be

curved surfaces for ease in constructing structured meshes
in each of the zones. Several examples axe presented to

demonstrate the viability of the interfacing procedure.

Introduction

There are two basic approaches of numericaLly simu-

lating the Navier-Stokes equations about complex and re-
alistic aerodynamic configurations. One is based on struc-

tured meshes in which the neighbors of a mesh point are

known implicitly. The other approach is based on an un-

structured mesh in which the neighbors of a mesh point are
not known implicitly and this information must be stored

for each point. Numerical methods based on structured

meshes are well developed, but suffer limitations when

dealing with complex config/Jrations in that it is difficult,

if not impossible, to generate a single mesh about such a
configuration and still have the required mesh qualities for

stable and accurate numerical solutions. The generation
of unstructured grids about complex configurations is, in

principle, much easier; however, the numericM methods for

such grids are not yet mature enough to compete against

structured grid numerical methods.
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The structured grid generation problem for complex
configurations can be alleviated by zonal methods. In
this method the overall domain is subdivided into smaller

blocks or zones. In each of these zones, a grid is gener-
ated and the flow field is solved independently of the other

zones. The boundary data for each zone is provided by
the neighboring zones. The major difficultyof the zonal
methods has been how to maintain overallconservation for

arbitraxilyshaped zones. The resolutionof thisdifficulty

is the purpose of this paper.

There are two types of zonal methods in common us-
age today. One is the overlaid zones in which both zones

share a common interface region, as used in the Chimera
[1] approach. The other is the patched zonal technique
where the two zones share only a common boundary. Ex-

amples of this approach are the zonal method of Ral [2] and

Thomas [3]. Both methods have advantages and disadvan-
tages depending on the application. With patched grids it

is much easier to maintain conservation since there is only

one boundary across which the two zones communicate.
On the other hand for moving multiple bodies the overlaid
grid approach has certain advantages if conservation is not

important, i.e., the flow field is continuous with no shock

waves or shear surfaces. If conservation is important, as it

is in thii investigation, then we are restricted to patched

zones.

Most methods using conservative patching methods

are restricted to interface surfaces which are planar sur-

faces due to the minor gaps and overlaps that occur at a
curved interface if the two zones are not mesh continuous.

Furukawa et al [4] attempted to resolve this problem by

using only one of the zones to determine the zonal bound-

ary for both zones. The open question that remains is
which zone determines the interface boundary. Furulmwa
et al chose to use the zone which has the better resolution.

This can result in loss of accuracy if the mesh ratio changes
in the interface, for example at a viscous boundary layer.

In this paper the zonal interface boundary is deter-
mined by the union of all the face mesh points of both ad-

joining zones. The interface surface is now unique and de-
termlned much more accurately than either one of the indi-
vidual face surfaces. The collection of interface points is in

general no longer structured and readily available unstruc-

tured grid generation tedmiques can be used to construct

(triangulate) an interface grid. With the triangulated in-
terface grid, the metrics (i.e., surface area normals) and
cell volumes can be determined for each of the interface

ce_s.

The development of the interface algorithm is dis-

cussed in the following sections. The procedure h_

been implemented into two finite volume three-dimensional
Navier-Stokes codes, namely TUFF [5] and a finite volume

version of CNS [6] henceforth called CNSFV. We will limit

the exposition to the diagonal version of the Beam and
Warming scheme [7] as used in the CNSFV code, but re-

suits from the TUFF code will also be presented.



NumericalScheme

Navier-Stokes Equations

The three-dimensional th;n-]ayer Navier-Stokes equa-
tions in strong conserwtion law form in curvJlJnearcoor-
dinates are

The metrics used above have a differentmeaning for a
finitevolume formulation compared to the finitedifference

formulation of :6].Referringto a typlc_lfinitevolume cell

as shown in figureI, the finitevolume metrics _re defined

(see, for example, Vinokur [8]) _s

s_. i = s.j+ i i + s,j+ }j + s,,j+ i k

where

pU

I "_ +_,_.p I,
| p_U + _,vp |
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The contravariant velocity components are defined as

V = f"(n_ + ,l,u + %v + n.w),

w = f'((, + ¢,_ + ¢_,,+ G,_)

and the viscous flux is given by

I 0 )mlu¢ + rn2G/3

S = pV rnlvc + rrt:(y/3

mlw¢ + rn2¢,/3

mlm_ + rn,(Gu + G,v+ Gw)/3

(_)

(s)

(4)

st+| = %,J,+}| + %,k+½J + s,,_+½k

= _[(r, - r2) x (r, - r2) + (r. - rs)X (rT- r2)]

st+ | = s,j+ti + %j+ij + s,j+½k (7)

= _[(rr - rs) x (r. - rs) + (rs - rs) X (r, - rs)]

The finite volume metrics represent the cell face area

normals in each of the curvilineaz coordinates (_,r/,().
They ate related to the metrics introduced in equations

(1 - 5) as follows

GO" = s,j+}

{yl? = syj+i

L_" = s,.._+}

with

ml = G 2 + G 2 + G _,

rn2 = (._¢ + (yv¢ + Gw¢,

,_ = (_=+ ,,: + ,_*)/2 + (P,(-_- I))-_(_:)c

The pressure is given by the equation of state

= (_ - t)(e - #(n_+ _ + _)/2)

Metric Terms

(5)

(6)

_/,I) = s,,_+½

,_P = S,,k+!

,niz = , ,,_+½

G_Y= s..,+i

G'2 = s,,,+i

G";"= ',,,+ _,

(s)



The volume of the computational cell is given by

1

IZ = _[(r, - rl) x (rs - rl). (rv - r,)

+(rs - rz) × (r4 - rl). (rT- r,)

+(rs - rl) × (r2 - rl). (rv -ra)

+(r_- rx) x (rs- rl).Crv- rs)

+(,'s - r_) x (r_ - r_). (r,- - r,)

+(r_ - r_) × (r, - r_). (r, - r,)] O)

and is the finite volume equivalent of the inverse Jacobian
of the coordinate transformation in the finite difference

formulation of [6].

Diagonal Beam-Warming Algorithm

The implicit Beam-Warming scheme for the finite
volume formulation is given by

[I+ ]/-1]z(6lA" + 6.B _ + 6¢C _ - Re-16( M'*)],fQ -I = R'*

(10)

where

OqG = B = T,A,T,-I

cgqH = C = TcAcT(-'

The ToT,.T ( are the eigenvector matrices of A, B, C,

respectively with A_, A., he as the respective eigenvalues.

We also have

e = T.-'T(

Each of the factors of the implicit operator of equa-
tion (12) ha, an artificial term added to stabilize the cen-
tral difference operator. The dissipation is based on Jame-
son's nonlinear second and fourth order dissipation and for

the _- operator takes the form

with

cO) = _rnaz(7._+1,Tj,7./-l) (14)

[Pj+I -- 2Pi + Pj-1 t

7i = [Pi+I + 2p) + Pj-l[
05)

R" = -¢¢-lh[,5¢F'* + $.G" +6¢11 '_ - Re-_$¢S "_] (11)

The convective three-dimensional flux Jacobians A,

B, C and the viscous flux Jacobian are defiaaed in the ap-

pendix of [5]. With the use of approximate factorization

and diagonalizationof the fluxJacobian matrices,a scalar

pentadiagonal algorithm [7] can be derived as

T¢[I+ V-_/_6_A{]N[I. V-lh6,A,]P-

[I + 1;'-1 h6¢Ac]T¢-IAQ " = R" (12)

where Q is a central difference operator and AQ n =

Q"+_ - Q_ with Q,+1 = Q(t" + h). The viscous terms

are not included in the left-hand (implicit) side. The ar-
tificial dissipation is included in both sides and is derived
below.

The inviscid flux Jacobians are diagonalized as fol-
lows:

aQF = A = T_A_T_-1

e (4} = maz(0, _4 - e(2)) (16)

where _,r_ are constants of o(1), and A_,_7 _ are the for-

ward and backward difference operators. _j+ _ is a modi-

fied spectral radius defined

a, = + (17)

= [Ivl+ ova,,, + s,, +ffj

and where cell centered surface areas are used, e.g.

(18)

1

s,,i = _(s.,i+ i + *.,i-_)

The modified form of the spectral radius, equation

(17), is suggested by Turkel [9] to account for large aspect



ratio computational cells as for example in a viscous ]ayer.
Similar dissipation terms are obtained for the r/- and _'-
operators. The dissipation terms added to the right hand
side of equation (10) are identical to those given above
except that AQ" is replaced by Q".

To show that the above scheme is conservative and
has the telescoping property, the right hand side of (12)
can be written as

- "" +Re-l$? i] (19)+_t _['-t - R_-IS_+_ --

where F, G, H, S are the numerical fluxes and are defined,

for example for f', as

,el÷½= _7+½+ _+i (J2) A_ q" - J') A_ v_ A_ q")i÷ _,
(20)

with

I
$'7+]= $ {s,,_+½(h+1+/j)" + ,,,_+½(gj+, + g_)"

+,,j+ _(h,+_ + hj)"] (21)

Similar terms are obtained for the numerical fluxes
in the other two coordinate directions.

Boundary Conditions

To complete the equation set, boundary conditions
must be specified. With the use of curvilinear coordinates,
the physical boundaries have been mapped into compu-
tational boundaries, which simplifies the application of
boundary conditions. The boundary conditions to be im-
plemented for external viscous or inviscid flows include (1)
inflow or far field, (2) outflow, (3) inviscid and (4) viscous
impermeable wall, and (5) symmetry conditions. For ex-
ternal three-dimensional flow fields about closed bodies,
the topology of the grid usually introduces (6) grid singu-
larities which require special boundary conditions. The use
of zonal methods can avoid the generation of grid singu-
larities, but requires (7) special zonal interface boundary
conditions. For compressible flows these zonal boundary
conditions should be conservative to maintain global con-
servation.

In the finite volume approach, the specification of
boundary conditions reduces to specifying the appropriate
numerical fluxes at the boundaries. The details of im-

plementing boundary conditions (1) through (5) are well
known and are given in [5] and [10]. The grid singularity
boundary condition is described below and the interface
boundary conditions are given in the next section.

The grid singularity boundary co_hlo_ is similar to
the symmetry boundary condition for tee invisdd and vis-
cous fluxes in that there is no flux through tha_ boundary.
If, however, that is all that is done the results shown in
figure 2a are obtained. These results are the density con-
tours of a Mach 8 viscous blunt body flow. As shown in the
figure, a nonphysical behavior appears at the singular line.
The nonphysical results are due to a local violation of the
entropy condition [11]. For central difference schemes, the
artificial dissipation is the only stabilizing (en:ropy pro-
during) mechanism available. At the grid sing_arity, the
spectral radius, and hence the artificial dissipation, van.
ishes due to the vanishing of the metrics. The introduction
of Harten's entropy correction [12] resolves the difficulty
and the results are shown in figure 2b.

Interface Method

Most methods ufing conservative patching methods
are restricted to interface surfaces which are planar due
to the minor gaps and overlaps that occur at a curved in-
terface if the two zones are not mesh continuous. This is
demonstrated in figure 3a. Fu_kawa et al [4t attempted to
resolve this problem by using only one of the zones to de-
termlne the zonal boundary for both zones. This is shown
for the two-dimensional example in figure 3b. The open
question that remains is which zone determines the inter-
face boundary. Purukawa et al chose to use the zone with
the better resolution. This, however, can result in loss of
accuracy if the mesh ratio changes in the interface as for
example at a viscous boundary layer.

In this paper the zonal interface bounda-,7 is deter-
mined by the union of all the face mesh points of both ad-
joining zones as shown in figure 3c for the two-dimensional
case. The interface surface is now unique and determined
much more accurately than by either one of the individ-
ual face surfaces. This presumes that the individual points
from both zones lie in the interface surface and that the
interface surface is itself smooth and continuous. The col-
lection of interface points is, in general, no longer struc-
tured, and readily available unstructured grid generation
techniques can be used to construct (triangulate) an inter-
face grid. With the triangulated interface grid, the metrics
(i.e., surface area normals) and cell volumes can be deter-
mined for each of the interface cells, i.e., the computational
cells that touch the interface surface.

The redefinition of the interface surface has modified

all the interface cells and they are no longer hexahedral,
but rather multifacetted. Determining the surface area
normals and cell volumes now becomes more complicated.
There are three types of interface ceils, namely, face cells,
edge ceils, and corner cells. The face cells have only one
face bordering other zones, whereas the edge and corner
cells have two or three faces in contact with other zones,
respectively. A typical cell at the interface is shown in
figure 4.

The modification introduced by the interface surface
requires that the metrics and cell volumes of the interface
cells be corrected to account for the changed shape of the
interface cells. Corrections are required for the area nor-
mats of the ceil face touching the interface surface, the four
sidewalls, which may no longer be quadrilaterals, and the
cell volume. For invisdd steady flows, the ceil volume cor-
rections are not needed since the volume has no efl'ect on

the steady solution as shown by equation (11). FIowever,



forallviscousflowsand inviscidunsteady flowsthe volume

correctionsaxe necessary.

There axe two ways that the interfacegrids can be

triangulated. The firstinvolves eliminating all the grid

linesfrom the structured grid cellfaces and constructing

the triangulatedmesh. Since in general the new grid lines
willnot be aligned with the originalgrid lines,a clipping

algorithm isused to cllpthose triangleswhich lleoutside a

particularindividualfacecellof eitherzone. An exaxnple of

thistriangulationprocedure isshown in figure5. Here two

zones have square faceseach consistingof a Cartesian grid

of 15 x 15 uniformly spaced points. The two facesare ori-

ented at an angle of 45 ° to each other (see figure 5a). The
union of both setsof face points resultsin an unstructured

collection of points which are then triangulated with an

advancing front unstructured mesh generation procedure

[13].The resultingmesh is shown in figure5b.

The second procedure retainsthe originalgrid lines

and triangulatesany setof points which form a polygon of

more than three sides. This approach avoids the use of a

clipping algorithm since each face cell contains an integral

number of interface triangular cells. An example of this

procedure is shown in figure lob for two zones with polar

grids.

The unstructured interface grid requires that a set

of pointers be defined. These pointers indicate which two
interface ceils share a common interface area or section.

These sections need not be triangular even though the sur-

face has been triangulated. A common section (or poly-

gon) may be composed of several triangles if the surface

is triangulated by the second procedure described above

or it may be composed of several clipped triangles if the

first procedure is used. For a more e_cient interface flux

computation it is convenient to define another set of cross-
reference pointers. These cross-reference pointers identify
which interface polygons are in contact with each of the
interface cells.

Numerical InterfaceFlux

The finalstep required forthe conservativeinterface

algorithm is to determine the numerical fluxes at the inter-
face. Originally it was anticipated that the interface flux

could be determined by any stable numericaJ scheme, not
necessarily the one used in the interior of the zone. How-

ever, it was found that if the numerical schemes differ, then
"glitches" always appear at the zonal interface. It was also

necessary to maintain the sarne order of accuracy for the

interface scheme as for the interior scheme. An example

of this case is shown in figure 6. Eiere the interface flux is

determined by a first order upwind scheme and the interior

by a second order upwind scheme. The unfortunate results
are the discrepancies at the interface boundary as shown

by the pressure contours. The use of the same second or-
der upwind scheme for the interface flux eliminates these
discrepancies.

The above example shows that it is not possible to

completely generalize a conservative interface algorithm.

The numerical flux must be determined by the same nu-
merical scheme as used in the interior of the zone. The

geometric aspects of the interface algorithm can be gen-
eralized, which is essentially the most difficult part of the

interface procedure. The numerical fluxes at the inter-

face must (and should) be computed by the particular flow

solver involved.

The computation of the interface numerical flux is
relatively straightforward. Since it is scheme dependent it
is given is general form first, valid for many schemes up

to second-order accuracy. A specific form will be given for

the CNSFV code. Figure 7 shows two zones, jl and j2, and
the interface with the indi*idual surface polygons labelled

by "i". The flux at the interface section "i" is given by

where @ is the function defining the particular scheme un-
der consideration, _ is the area normal of the interface

section "i', and the _l and _2 are the cell-centered values

in zones 1 mad 2, respectively.

The numerical flux at the opposite face of the inter-

face cell is slightly more complicated. It is

Fj,=t = ¢[¢;,=t,¢,_=*,6'=',6,=,,_,=,1

where 6,=_ is the area (i.e., I/_1) weighted average of all

the interface calls of the zone "1" sections that comprise
the face cell of zone "2" touching the interface surface.
If higher order schemes are considered, then special care
must also be taken for the fluxes at the next level of cell

faces, ie. f_2= t. The above formulation is valid for all
cell-centered _nite volume schemes.

For the particular caseof the CNSFV code, the in-
terfacenumerical fluxes are

= P_' + ai(d2)A_ O" - J')A_ V_ A_ Q")t

where

1 i

/]' = _ [_ =(/,,=, +/s=,)" + ,',(gJ,=, + gJ,=,)"

and

e_ = #'#1=1 + ei2=l

The flux at j2 = _ is similarily determined, ta_king care to
use the appropriate area averaged values of all cell-centered
V_UeS.

Results

To validate the interface algorithm, several tests were

conducted. The first test is the freestream preserving test.



In this test, the inflow and and permeable wall boundary
conditions (ie. conditions (1).(3) or (4) from the boundary
conditions section) are set to the freestream conditions and
the solution is converged. If the initial conditions were also
set to the freestream condition, then the residual should
be at machine zero (R= O(10-14)) and remain there for
all subsequent iterations provided that the flow field is dis-
cretized properly with no gaps or overlaps in any of the
computational cells and interface boundaries. Indeed, for
the CNSFV code, this was the case.

However, the freestream test is not a good indication
of the accuracy of the scheme. Because of the telescoping
property of the scheme, the surface area normals can be
computed inaccurately (even erroneously) and the scheme
will still pass the freestream test. To test for accuracy,
a single cell residual, equation (19), is computed w_th the
same freestream conditions imposed as above. In this case,
the maximum residual was of the O(10 -8) on a 64 bit
machine (Cray YMP). If the grid and the metric terms
are computed in double precision (ie. 128 bits), then the
maximum residual reduces to O(10-12). This indicates
that machine roundoff errors are not yet a problem, but
can be if the meshes are refined much further.

Three different flow cases coveting the entire Much
regime from incompressible, to supersonic, and to hyper-
sonic flows with finite rate chemistry were computed with
the TUFF code. The same basic conservative interface al-
gorithm described above was used in all three cases, how-
ever the conservation law equations differed for each of the
three cases.

The first case involved an incompressible inviscid flow
about a cylinder. The two zone mesh is shown in figure 8a.
The pressure contours are given in fig'are 8b and the surface
pressures in 8c. The results across the zonal boundaries are
smooth and continuous.

The second set of results are for supersonic blunt
body flow. This case is an inviscid Much 2, axisymmetric
blunt body flow computed on the four-zone mesh shown in
figure 9a. Figure 9b shows the solution and the bow shock
position. For these results, the analylic shock location at
steady state [14] is shown by the solid squares. The solu-
tion is shown in terms of much contours on a background
grid which is eeU centered for plotting purposes only. As
can be seen the multizonal computed and analytic shock
shapes compare quite well.

The final flow results obtained are for a viscous hy-
personic flow about a hemisphere at M_o = 15.3 and
Re = 2.2 x 10s/re. The interface triangulation for the
two zones containing the grid polar singularity is depicted
in figure 10b. The flow results in terms of Much and
atomic oxygen concentration contours are shown in figures
10c and d, respectively. Again, the results indicate that
the solution contours are smooth and continuous across
the zonal boundaries. Although not shown, the computed
shock stand-off distance agreed well with the experimental
data of reference 15.

Closing Remarks

A conservative zonal interface algorithm has been
presented. It uses some of the best features of both the
structured and unstructured mesh CFD technology. The
interface surface grid is unstructured from which the met-
rics and interface fluxes can be readily constructed to ob-

taln the proper conservative interface algorithm. For effi-
ciency and rapid convergence, the flow solver within each
of the zones is based on structured mesh CFD technology.
The ordering between the zones can be unstructured for
maximum flexibility in constructing zones and grids about
complex and arbitrary configurations. The interface algo-
rithm has been implemented into two three-dimensional
Navier-Stokes finite volume codes (TUFF and CNSFV)
and has shown to yield good results. Further testing is
being conducted for more complex and realistic aerody-
namic configurations. The procedure is general and can
be easily implemented into other finite volume codes.
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Figure 1. Finite volume cell nomenclature.

a) grid singularity problem. b) grid singularity problem resolved
by Ha*tea's entropy correction {12].

Figure 2. Density contours for a viscous blunt body flow

M_ = 8.0, Re_ = 2.19 x 10s,a = 5.0 °
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Figure 3. Zonal Boundary on a Curved Interface

Figure 5b. The unstructured grid

of a typical interface surface.
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a) Two zoneg_d.

Figure 8. Invlscid incompressible flow about a cylinder.
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Figure 8. Invisdd incompressible flow about a cylinder.

a) Four zone grid. b) Much contours.

I - analytic bow shock location

(Lyubimov, NASA TT-F715, 1973).

Figure 9. Axisymmetric inviscid blunt body flow at Moo = 2.0.
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(a) Four Zone Grid (b) The Two Face Grids and Triangulation
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(c) Mach Contours
(d) Atomic Oxygen Concentration Contours

Figure 10. Viscous Hypersonic Blunt Body Flow with Finite Rate Chemistry M_ = 15.3, Re = 2.2 x 105/rn.
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